Search results for " Langevin equation."
showing 5 items of 5 documents
Noise enhanced stability in fluctuating metastable states Phys. Rev. E69, 061103 (2004)
2004
We derive general equations for the nonlinear relaxation time of Brownian diffusion in randomly switching potential with a sink. For piece-wise linear dichotomously fluctuating potential with metastable state, we obtain the exact average lifetime as a function of the potential parameters and the noise intensity. Our result is valid for arbitrary white noise intensity and for arbitrary fluctuation rate of the potential. We find noise enhanced stability phenomenon in the system investigated: The average lifetime of the metastable state is greater than the time obtained in the absence of additive white noise.We obtain the parameter region of the fluctuating potential where the effect can be ob…
Suppression of timing errors in short overdamped Josephson junctions
2004
The influence of fluctuations and periodical driving on temporal characteristics of short overdamped Josephson junction is analyzed. We obtain the standard deviation of the switching time in the presence of a dichotomous driving force for arbitrary noise intensity and in the frequency range of practical interest. For sinusoidal driving the resonant activation effect has been observed. The mean switching time and its standard deviation have a minimum as a function of driving frequency. As a consequence the optimization of the system for fast operation will simultaneously lead to minimization of timing errors.
Predator population depending on lemming cycles
2016
In this paper, a Langevin equation for predator population with multiplicative correlated noise is analyzed. The noise source, which is a nonnegative random pulse noise with regulated periodicity, corresponds to the prey population cycling. The increase of periodicity of noise affects the average predator density at the stationary state.
Translocation dynamics of a short polymer driven by an oscillating force
2013
Under the terms of the Creative Commons Attribution 3.0 Unported License.
Detector's quantum backaction effects on a mesoscopic conductor and fluctuation-dissipation relation
2017
International audience; When measuring quantum mechanical properties of charge transport in mesoscopic conductors, backaction effects occur. We consider a measurement setup with an elementary quantum circuit, composed of an inductance and a capacitor, as detector of the current flowing in a nearby quantum point contact. A quantum Langevin equation for the detector variable including backaction effects is derived. Differences with the quantum Langevin equation obtained in linear response are pointed out. In this last case, a relation between fluctuations and dissipation is obtained, provided that an effective temperature of the quantum point contact is defined.